Postedon March 5, 2022 | By zaenuddin | No comments. Pengertian Relasi, Contoh Soal, Perbedaan dengan Fungsi & Jenisnya – Pengertian Relasi secara etimologi (bahasa) berarti “hubungan”. Namun dalam matematika, pengertian relasi atau hubungan adalah hubungan antara anggota suatu himpunan dengan anggota himpunan yang lain. Karenaposisi ini adalah posisi termudah dan secara naluri pria pertama kali berhubungan intim akan menggunakan posisi ini Kesimpulan Tingkat pengetahuan ibu tentang demam tifoid memiliki hubungan yang bermakna dengan kebiasaa jajan anak sekolah dasar Jadi tidak ada salahnya jika setiap benda yang melakukan gerak translasi dianggap sebagai PerbandinganAlgoritma Astar dan Dijkstra Dalam Menentukan Rute Terdekat 38 IJCCS Jurnal Ilmiah SISFOTENIKAJuly201x Terpendek Rumah Sakit di Purbalingga dengan Metode Algoritma Dijkstra dari Alun-alun Purbalingga ke berbagai Rumah Sakit di Purbalingga. penelitian adalah perbandingan waktu,jumlah langkah dan konsumsi cpu dan ram 2. METODE PENELITIAN Vay Tiền Nhanh. M = komponen y komponen x = 104 = garis y-y1 = m x-x1y-10 = x-4y-10 = - 10y = -10 +10y = ASemoga membantu, jadikan jawaban terbaik yaa, Maturnuwun ~✓~ M itu komponen y komponen x Dalam artikel ini terdapat 7 buah soal matematika SMP kelas VII semester 2 sub materi memahami dan menentukan perbandingan dua ini telah disesuaikan dengan materi yang terdapat dalam buku paket matematika kelas 7 SMP kurikulum 2013 revisi terbaru 2018. Soal dibuat dalam bentuk analisis pilihan gandaJadi, soal-soal ini cocok dijadikan sebagai latihan dan juga media evaluasi untuk siswa adalah contoh soal matematika perbandingan dan narasi dibawah ini, jawablah pertanyaan nomor 1 dan guru ingin mengetahui minat siswa kelas VIIA terhadap dua jenis bacaan yaitu novel dan komik. Diantara 40 siswa di kelas VIIA tersebut, 10 siswa lebih suka membaca novel ketimbang komik. Sedangkan sisanya lebih suka Hanya 1/4 siswa kelas VIIA yang suka membaca novelB. Satu dari empat siswa kelas VIIA suka membaca novelC. Perbandingan siswa yang suka membaca komik terhadap siswa yang membaca novel adalah 1 4D. Banyak siswa yang suka membaca komik adalah tiga kali lipat dibandingkan siswa yang suka membaca novelPembahasanDari narasi untuk soal ini diketahui bawahJumlah siswa kelas VIIA = 40 siswaJumlah siswa yang suka baca novel = 10 siswaMaka, jumlah siswa yang suka baca komik = 40 - 10 = 30 siswaBerdasarkan data diatas, mari kita cek satu persatu kebenaran dari pernyataan yang diberikan pada opsi AHanya 1/4 siswa kelas VIIA yang suka membaca novelDari pernyataan ini kita bisa mengetahui bahwa yang dibandingkan adalah jumlah siswa yang suka baca novel dengan jumlah seluruh siswa pada kelas jumlah siswa yang suka baca novel terhadap seluruh siswa = 10 40 = 1 4Pernyataan A BSatu dari empat siswa kelas VIIA suka membaca pernyataan A sudah diketahui bahwa perbandingan siswa yang suka baca novel dengan seluruh siswa adalah 1 4. Itu artinya 1 dari 4 siswa kelas VIIA suka membaca B juga CPerbandingan siswa yang suka membaca komik terhadap siswa yang membaca novel adalah 1 4Dari data awal, diketahui bahwa ada 30 siswa kelas VIIA yang menyukai membaca komik dibandingkan novel. Maka perbandingan yang seharusnya ditulis adalah = 30 40 = 3 4, bukan 1 pernyataan C adalah 4Banyak siswa yang suka membaca komik adalah tiga kali lipat dibandingkan siswa yang suka membaca antara jumlah siswa yang suka membaca komik dengan jumlah siswa yang suka membaca novel adalah = 10 30 = 1 tersebut memiliki arti bahwa memang benar jumlah siswa yang menyukai komik tiga kali lipat dibandingkan jumlah siswa yang menyukai D CContoh Soal 2Diketahui beberapa rasio sebagai berikut1 3 12 3 43 3/14 3/4 Rasio perbandingan yang benar antara siswa kelas VIIA yang suka membaca komik dengan seluruh siswa ditunjukkan oleh nomor………A. 1 dan 2B. 1 dan 3C. 2 dan 4D. 3 dan 4PembahasanAda beberapa cara yang dapat dilakukan dalam menyatakan rasio perbandingan. Dengan menggunakan tanda titik dua. Contoh perbandingan siswa yang suka membaca komik terhadap seluruh siswa = 30 40 = 3 4Mengungkapkan dalam bentuk pecahan. 3 4 dapat ditulis juga dengan 3/ kata "banding". 3 4 dapat juga ditulis dengan 3 banding CContoh Soal 3Dalam suatu perlombaan makan ditentukan waktu 10 menit pada setiap peserta untuk memakan donat yang disediakan panitia. Setelah batas waktu habis ternyata perbandingan donat yang dihabiskan oleh Edo dan Edi dalam perlombaan tersebut adalah 1 3. Pernyataan berikut yang benar berkaitan dengan hasil perlombaan tersebut adalah………A. Jumlah donat yang dihabiskan Edo 3 kali lebih sedikit dibandingkan EdiB. Jika Edi memakan 9 donat maka jumlah donat yang dihabiskan Edo adalah 6 buahC. Jumlah donat yang dihabiskan oleh Edo dan Edi pada perlombaan tersebut adalah samaD. Saat Edo selesai memakan satu donat Edi sudah memakan 4 donatPembahasanPerbandingan jumlah donat yang dimakan oleh Edo dan Edi dalam perlombaan dengan batas waktu 10 menit adalah 1 3 atau 1/ jika Edo selesai memakan 1 buah donat maka Edi sudah menghabiskan 3 buah donat. Maka, pernyataan C dan D adalah donat yang dimakan oleh keduanya tidak sama. Jumlah donat yang dimakan Edi adalah 3 kali lebih banyak dibandingkan yang dimakan oleh Edo atau sebaliknya, jumlah donat yang dimakan oleh Edo 3 kali lebih sedikit dibandingkan yang dimakan oleh dari itu, pernyataan A mengecek kebenaran pernyataan B, bisa dilakukan dengan cara berikut. Dari pernyataan A sudah diketahui bahwa jumlah donat yang dimakan Edo adalah 3 kali lebih sedikit dibandingkan jumlah donat dimakan Edi atauJumlah donat yang dimakan Edo = 1/3 x jumlah donat yang dimakan si Edi sudah menghabiskan 9 donat, maka seharusnya donat yang sudah dimakan Edo adalah sebanyak= 1/3 x 9= 3 buahJadi jelas pernyataan B juga tidak ABacalah bacaan berikut untuk menjawab soal nomor 4 dan orang siswa yaitu Andi, Teti dan Roni sedang mengikuti ujian matematika. Ani berhasil menjawab 15 soal matematika dalam waktu 10 menit dan Teti dapat menjawab 25 soal dalam waktu 15 menit. Sedangkan Roni dapat menjawab 6 soal dalam waktu 4 Soal 4Diantara ketiga siswa tersebut yang paling cepat dalam mengerjakan soal matematika adalah………A. AniB. TetiC. RoniD. Ani dan RoniPembahasanAgar dapat mengetahui mana siswa yang paling cepat mengerjakan soal matematika, kita harus melihat jumlah soal yang dapat dikerjakan oleh masing-masing siswa dalam waktu yang sama misalkan 1 soal yang dikerjakan + waktunyaAni = 15 soal dalam waktu 10 menit ==> maka jumlah soal yang dapat dikerjakan oleh Ani permenit = 15 soal/10 = 1,5 soal/menitTeti = 18 soal dalam 9 menit ==> jumlah soal yang dikerjakan Teti permenit = 25 soal/15 = 2 soal/menitRoni = 6 soal dalam 4 menit ==> jumlah soal yang dikerjakan Roni permenit = 6/4 = 1,5 soal/menitNah, dari perhitungan diatas dapat diketahui bahwa yang paling cepat dalam mengerjakan soal matematika tersebut adalah B Contoh Soal 5Berikut adalah beberapa pernyataan terkait bacaan di soal yang dikerjakan oleh Ani per menit lebih banyak dibandingkan RoniTeti adalah yang paling lambat dalam mengerjakan soal matematikaRata-rata jumlah soal yang dapat dikerjakan Ani per menit adalah 1,5 soalKecepatan Ani dan Roni dalam mengerjakan soal adalah samaPernyataan tersebut yang benar ditunjukkan oleh nomor…………A. 1 dan 2B. 1 dan 3C. 2 dan 4D. 3 dan 4PembahasanPernyataan 1 = salahHarusnya jumlah soal yang dikerjakan oleh Ani dan Roni permenit adalah 2 = salahTeti bukan yang paling lambat dalam mengerjakan soal matematika melainkan adalah yang paling cepat. Pembahasannya dapat kalian lihat pada contoh soal nomor 3 = benarRata-rata jumlah soal yang dikerjakan Ani memang lebih sedikit dibandingkan Teti 1,5 2.Pernyataan 4 = benarPembahasannya lihat pada pernyataan DContoh Soal 6Perbandingan dibawah ini yang setara dengan 3 7 adalah………A. 14 6B. 9 14C. 6 21D. 6 14PembahasanMencari perbandingan yang setara caranya sama dengan mencari pecahan yang setara yaitu dengan melihat faktor pengali pembilang dan penyebutnya. Jika sama, maka perbandingannya 7 = 3/7 = 2/14 dengan faktor pengali = 2Jadi, perbandingan 3 7 setara dengan 2 Soal 7Didalam sebuah kotak terdapat 200 permen. 75 diantaranya adalah permen rasa coklat, setengahnya adalah permen rasa karamel dan sisanya adalah permen sebuah rasio yang paling tepat untuk menunjukkan perbandingan ketiga rasa permen yang ada dalam kotak tersebut berturut-turut adalah………A. 1 3 4B. 3 4 1C. 3 1 4D. 4 1 3PembahasanDidalam kotak ada 200 coklat = 75 buahPermen karamel = 1/2 x 200 = 100 buahPermen buah = 200 - 75 + 100 = 25 buah Perbandingan permen rasa coklat karamel buah = 75 100 25 sama-sama bagi 25 = 3 4 1Jawaban BContoh Soal 8Dalam suatu lomba lari, Lisa membutuhkan waktu 8 menit untuk sampai ke garis akhir. Sedangkan Rose membutuhkan waktu 12 menit untuk sampai ke garis akhir. Pernyataan di bawah ini yang paling tepat berdasarkan kondisi tersebut adalah……..A. Rose 1,5 kali lebih cepat dibandingkan LisaB. Lisa 1,5 kali lebih lambat dibandingkan RoseC, Perbandingan waktu antara Lisa dan Rose dalam mencapai garis akhir adalah 2 3D. Perbandingan waktu antara antara Lisa dan Rose dakam mencapai garis akhir adalah 2 4PembahasanPernyataan A = salahDari soal diketahui Rose membutuhkan waktu lebih lama untuk mencapai garis akhir. Harusnya Rose lebih lampat dibandingkan B = salahKarena Lisa bukan lebih lambat dibandingkan Rose, melainkan lebih C = benarPerbandingan waktu yang dibutuhkan oleh Lisa dan Rose= 8 menit 12 menit= 2 3Pernyataan D = salah, karena perbandingan waktu yang benar antara Lsia dan Rose adalah 2 Jawaban CContoh Soal 9Seorang peneliti ingin mengetahui kandungan gula dalam beberapa produk minuman bersoda. Hasil penelitiannya dapat dilihat pada gambar di bawah gula terbanyak terdapat pada minuman merk…….A. Merk DB. Merk CC. Merk BD. Merk APembahasan Untuk menentukan minuman bersoda merk apa yang mengandung gula terbanyak, kita perlu mencari berapa kandungan gula per mL dari setiap minuman bersoda yang gula dalam minuman bersodaMerk A = 15/250 = 3 50 setiap 50 mL mengandung 3 gram gulaMerk B = 40/500 = 4 50 setiap 50 mL mengandung 4 gram gulaMerk C = 10/100 = 5 50 setiap 50 mL mengandung 5 gram gulaMerk D = 30/400 = 3,75 50 setiap 50 mL mengandung 3,75 gram gulaDari hasil pencarian diatas terlihat bahwa minuman bersoda yang mengandung gula terbanyak adalah yang Merk Jawaban BTeks berikut digunakan untuk menjawab soal nomor 10 dan 11Di sekolah Andi akan diadakan kegiatan seminar bertajuk “Indonesia Pintar” yang wajib diikuti oleh setiap siswa disekolahnya. Berikut adalah daftar kegiatan yang akan dilaksanakan dalam seminar Soal 10 Berdasarkan data diatas, pernyataan di bawah ini yang tidak tepat adalah………A. Waktu penyampaian materi adalah ¼ dari lamanya acara seminarB. Rasio waktu isoma dan hiburan adalah 3 1C. Perbandingan waktu pembukaan dan penutupan acara adalah 1 1D. Waktu penyampaian materi adalah ½ dari lamanya acara seminarPembahasanDari tabel kegiatan seminar yang diketahui, ada dua kali penyampaian materi yang setiap penyampaiannya dilaksanakan dalam waktu 2 jam. Jadi total, waktu yang dibutuhkan untuk penyampaian materi pada acara seminar adalah 4 jam. Sedangkan, kegiatan seminar dimulai dari pukul sampai 8 jam. Berarti, waktu yang dibutuhkan untuk penyampaian maetri adalah ½ dari lamanya acara pernyataan A = salah dan pernyataan D sudah ketemu jawabannya, maka tentu pernyataan B dan C sudah pasti benar. Kalian bisa cek Jawaban DContoh Soal 11Perbandingan waktu sebelum dan sesudah isoma adalah……A. 6 7B. 3 4C. 5 6D. 3 7PembahasanIsoma dilaksanakan antar rentang waktu – 1 ½ jam. Sebelum waktu isoma, acara seminar telah berlangsung dari pukul – 3,5 jam, sedangkan setelah isoma, acara seminar dilanjutkan kembali hingga pukul 3 jam.Oleh karena itu, perbandingan waktu sebelum dan sesudah isoma adalah = 3 3,5 jam atau 6 7Kunci Jawaban AContoh Soal 12Perhatikan bentuk perbandingan dibawah inix/5=15/y= 75/125Nilai x dan y yang memenuhi persamaan diatas adalah…….A. 3 dan 5B. 3 dan 25C, 5 dan 25D. 4 dan 20PembahasanKita perlu mencari nilai x dan y pada persamaan diatas agar ketiga perbandingannya menjadi senilai. 15 akan sama dengan 75 jika dikali dengan 5. berarti, nilai x = 3, karena 3 x 5 = 15. Jadi, yang bagian pembilang pada perbandingan diatas, faktor pengalinya adalah mencari nilai y, kita lihat bahwa bentuk paling sederhana dari perbandingan diatas adalah 3 ; 5. Agar perbandingan kedua memilki bentuk paling sederhana 3 5, maka nilai y = 25. Jadi, faktor pengali untuk penyebutnya adalah 5,Maka, nilai x dan y berturut – turut adalah 3 dan Jawaban BSekian contoh soal matematika SMP pilihan ganda materi perbandingan memahami dan menentukan perbandingan dua besaran dan pembahasannya. Semoga bermanfaat. Hayo, siapa yang suka ngebanding-bandingin sesuatu? Misalnya, ketika nilai ujian dibagikan, biasanya momen membandingkan ini selalu berlangsung. Mulai dengan penasaran dan nanya, Eh, nilai lo berapa?’ Lalu, pas tahu nilai teman kita lebih besar, kita sakit hati, nyobek lembar ujian, lalu nelen bulat-bulat sambil menjerit, KENAPAAAA?!!’ Masalahnya, apa, sih, pengertian perbandingan itu? Bagaimana cara membandingkan yang benar dan apa saja jenis-jenis perbandingan? Stres karena nilai temen lebih gede saat dibandingin sumber Ternyata, meskipun terdengar remeh dan biasa kamu lakukan, kegiatan membandingkan itu ada kaitannya dengan matematika, lho. Ada cara-cara tertentu yang bisa kamu gunakan untuk melakukan perbandingan. Bagaimana Cara Membandingkan? Misalnya, nilai ujian matematika Yodi 80 dan nilai ujian matematika Rian 60. Nah, dari keterangan ini, kita dapat membandingkan data-data yang ada, yaitu 1. Nilai ujian Yodi 20 poin lebih besar. [Hal ini didapat dari perhitungan 80 – 60 = 20 poin] 2. Nilai Yodi empat per tiga kali lebih besar daripada Rian. [Hal ini didapat dari perhitungan 80/60 = 4/3] Dalam melakukan perbandingan, ada dua hal yang harus kamu perhatikan 1 Dalam membandingkan dua besaran dengan cara menghitung hasil bagi, besaran-besaran tersebut harus merupakan besaran yang sejenis. Contoh perbandingan yang salah Panjang pensil Ani ¾ kali berat badan Yudi Hal ini salah karena panjang pensil berada dalam satuan cm, sementara berat badan Yudi dalam satuan kg. Contoh perbandingan yang hampir benar Panjang pensil Ani 13 cm sementara panjang pensil Roberto 2 m. Hal ini karena kedua satuannya berbeda. Sehingga, ukuran satuannya harus disamakan terlebih dahulu menjadi sama-sama cm, atau sama-sama m. 2 Ketika melakukan perbandingan, pastikan hasil bagi kedua besaran suatu bilangan harus dalam bentuk yang paling sederhana. Misalnya, Kakak mempunyai uang sementara Adik Berapa perbandingan uang mereka? Kalau kamu menjawab 155 itu artinya kamu masih belum tepat. Bilangan itu masih bisa diperkecil lagi menjadi bentuk yang lebih sederhana. Berapa? Coba tulis di kolom komentar ya! Jenis-Jenis Perbandingan 1. PERBANDINGAN SENILAI Misalnya, terdapat himpunan-himpunan bilangan A = {1, 2, 3, 4, 5} dan B = {10, 20, 30, 40, 50} Himpunan A menyatakan waktu tempuh dalam satuan detik dan himpunan B menyatakan jarak yang ditempuh dalam satuan kilometer. Sekarang coba, deh, kamu pikir, apa nyumabungnya antara waktu tempuh dan jarak? Ya, betul. “sejauh”. Kita dapat mengaitkan waktu tempuh s “sejauh” jarak yang dia tempuh km. Maka hasilnya A 1 detik sejauh 10 km B 2 detik sejauh 20 km C 3 detik sejauh 30 km D 4 detik sejauh 40 km E 5 detik sejauh 50 km Kalau kita buat dalam bentuk tabel, maka akan menjadi Kamu sudah mulai bisa melihat polanya belum, Squad? Dalam perbandingan senilai, semakin tinggi nilai yang satu A, maka akan semakin tinggi juga nilai Bnya. Oleh karena itu, perbandingan jenis ini disebut sebagai perbandingan senilai. Karena nilai A akan “sejalan” dengan nilai B. Apabila data tadi kita olah dalam bentuk grafik koordinat kartesius, maka hasilnya akan seperti ini 2. PERBANDINGAN BERBALIK NILAI Misalnya, ada seorang peternak mempunyai 150 ekor sapi. Satu ikat rumput dihabiskan dalam waktu satu hari. Itu artinya, apabila peternak tersebut mempunyai A 75 ekor sapi, pakan ternak habis dalam waktu 2 hari B 50 ekor sapi, pakan ternak habis dalam waktu 3 hari C 30 ekor sapi, pakan ternak dihabiskan dalam waktu 5 hari D 25 ekor sapi, pakan ternak dihabiskan dalam waktu 6 hari Kalau kita buat dalam bentuk tabel, maka akan terlihat seperti berikut Dari data itu, dapat disimpulkan bahwa semakin sedikit jumlah sapi, maka jumlah yang dibutuhkan semakin banyak. Nah, perbandingan sepert ini dinamakan dengan perbandingan berbalik nilai. Apabila data tadi kita olah dalam bentuk grafik koordinat akrtesius, maka hasilnya akan menjadi Bagaimana, sudah mulai terlihat jelas kan perbedaan antara perbandingan senilai dan berbalik nilai. Kalau yang arahnya “sejalan”, itu termasuk ke dalam perbandingan senilai. Di sisi lain, kalau berbanding terbalik, masuk ke dalam perbandingan berbalik nilai. Kali ini kita sudah membahas tentang pengertian perbandingan, cara membuat perbandingan dan syarat-syaratnya, serta jenis-jenis perbandingan. Kalau kamu masih ada kesulitan atau tambahan, jangan ragu untuk tulis di kolom komentar ya, Squad. Lebih suka memelajari materi seperti ini sambil menonton video animasi lucu? ruangbelajar jawabannya! Referensi Raharjo M. 2018 Matematika SMP/MTs Kelas VII. Jakarta Erlangga Sumber foto GIF Orang Menangis’ [Daring]. Tautan Diakses 22 Desember 2020 Artikel diperbarui pada 22 Desember 2020

pada gambar dibawah ini perbandingan antara x dan y adalah